
State-space modeling 
using first-principles

Lecture 2

Principles of Modeling for Cyber-Physical Systems

Instructor: Madhur Behl
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Download Matlab
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Campus-wide license for MATLAB, Simulink, and companion toolboxes

https://www.mathworks.com/academia/tah-portal/university-of-virginia-40704757.html
(or search for UVA Matlab portal)

Contact res-consult@virginia.edu for questions regarding access to Matlab licenses.

https://www.mathworks.com/academia/tah-portal/university-of-virginia-40704757.html


In today’s lecture we will learn about…

How to predict the future !
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In today’s lecture we will learn about…

How to predict the future states and outputs of 
systems using physics based mathematical modeling
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In today’s lecture we will learn about…

• Ordinary differential equations (ODEs).
• Linear dynamical systems
• State-space representation
• Elements of first-principles based modeling:

• Mechanical and electrical modeling
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What is a System ?

Cruise control system
Autopilot system

Taxation system

Cardio-pulmonary system

Economic system

Communication system

Governance system

Healthcare system

Tropical storm system
Grading system

Complex system

System of systems

Cyber-Physical systems
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What is a System ? Intuitive defintion

Non-trivial interactions

Collection of components

Well defined boundary 
with the environment

Inputs u(t) Outputs y(t)
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What is a System ? 

Mapping from time dependent inputs to time dependent outputs

Inputs u(t) Outputs y(t)

(causal definition)
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Differential equations
Many phenomena can be expressed by equations which involve the rates of change of quantities (position, 
population, concentraition, temperature…) that describe the state of the phenomena. 

Economics Chemistry Mechanics

Engineering Social Science Biology
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The state of a system describes enough information about the 
system to determine its future behavior in the absence of any 
external inputs affecting the system.

The set of possible combinations of state variable values is called 
the state space of the system.
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Differential equations
The state of the system is characterized by state variables, which describe the system.

The rate of change is (usually) expressed with respect to time

Economics Chemistry Mechanics

Engineering Social Science Biology
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Differential equations – A simple example

After drinking a cup of coffee, the amount C of caffeine in 
person’s body follows the differential equation: 

𝑑𝑑𝐶𝐶
𝑑𝑑𝑡𝑡

= −𝛼𝛼𝛼𝛼
Where the constant 𝛼𝛼 has a value of 0.14 hour-1 

How many hours will it take to metabolize half of the initial amount of caffeine ?

∫ 𝑑𝑑𝐶𝐶
𝐶𝐶

= −𝛼𝛼 ∫𝑑𝑑𝑑𝑑 ; 𝛼𝛼 𝑑𝑑 = 𝛼𝛼0𝑒𝑒−𝛼𝛼𝑡𝑡 ; 𝑖𝑖𝑖𝑖 𝛼𝛼 𝑑𝑑 = 𝛼𝛼0/2, 𝑑𝑑 = ⁄𝑙𝑙𝑙𝑙𝑙 𝛼𝛼
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Differential equations –example



Recall: Differential equations

• Ordinary differential equation (ODE): all derivatives are with respect to single independent 
variable, often representing time.

• Order of ODE is determined by highest-order derivative of state variable function appearing in 
ODE.

• ODE with higher-order derivatives can be transformed into equivalent first-order system.

• Most ODE software's are designed to solve only first-order equations.
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Higher order ODE’s
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What makes a system dynamic ?

Currency Exchange
System

USD Euro

$100 €85

$200 €170

$300 €255

Inputs change with time ?

Outputs change with time ?
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Static  vs Dynamic Systems

Output is determined only by the 
current input, reacts 
instantaneously

Relationship between the inputs 
and outputs does not change (it is 
static!)

Relationship is represented by an 
algebraic equation

Output takes time to react

Relationship changes with time, 
depends on past inputs and initial 
conditions (it is dynamic!)

Relationship is represented by a 
differential equation

Static System Dynamic System

SystemInputs Outputs
2 10

2V 10 rad/sec

Motor
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Static  vs Dynamic Systems

Static System viewpoint Dynamic System viewpoint
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Dynamical System

System
Inputs

Output y(t)
Initial State 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= �̇�𝑥 = 𝑖𝑖(𝑥𝑥 𝑑𝑑 ,𝑢𝑢 𝑑𝑑 , 𝑑𝑑)

𝑥𝑥𝑥𝑥0

𝑢𝑢(𝑑𝑑)
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Dynamical System

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= �̇�𝑥 = 𝑖𝑖(𝑥𝑥 𝑑𝑑 ,𝑢𝑢 𝑑𝑑 , 𝑑𝑑)

Rate of change

Possibly a non-linear function
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𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= �̇�𝑥 = 𝑖𝑖(𝑥𝑥 𝑑𝑑 ,𝑢𝑢 𝑑𝑑 , 𝑑𝑑)

Rate of change

Possibly a non-linear function

The state 𝑥𝑥(𝑑𝑑1) at any future time, may be determined exactly given knowledge of 
the initial state, 𝑥𝑥(𝑑𝑑0) and the time history of the inputs, 𝑢𝑢(𝑑𝑑) between 𝑑𝑑0 and 𝑑𝑑1

System order: n, min number of states required for the above statement to be true. 
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Inverted pendulum

• Inverted pendulum mounted to a motorized 
cart.

• Unstable without control : 
• pendulum will simply fall over if the cart isn't 

moved to balance it.

Balance the inverted pendulum by applying a 
force to the cart on which the pendulum is 

attached.
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Inverted pendulum
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Inverted pendulum
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• Initially pendulum begins with 𝜃𝜃 = 𝜋𝜋
• Requirements:

• Settling time for 𝜃𝜃 less than 5 secs.
• Pendulum angle 𝜃𝜃 never exceeds 0.05 radians 

from the vertical. 

.

Inverted pendulum
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𝑀𝑀�̈�𝑥 + 𝑏𝑏�̇�𝑥 + N = FForces in the horizontal direction

𝑁𝑁 = 𝑚𝑚�̈�𝑥 + 𝑚𝑚𝑙𝑙�̈�𝜃 cos 𝜃𝜃 −𝑚𝑚𝑙𝑙2�̇�𝜃2 sin𝜃𝜃Reaction force N:

Governing equation (1) of this system:  Horizontal

(𝑀𝑀 + 𝑚𝑚)�̈�𝑥 + 𝑏𝑏�̇�𝑥 + 𝑚𝑚𝑙𝑙�̈�𝜃 cos 𝜃𝜃 −𝑚𝑚𝑙𝑙2�̇�𝜃2 sin𝜃𝜃 = F

Inverted pendulum – ODEs
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−𝑃𝑃𝑙𝑙 sin𝜃𝜃 − 𝑁𝑁𝑙𝑙 cos 𝜃𝜃 = 𝐼𝐼�̈�𝜃Get rid of the P and the N terms:
(moment balance equation) 

Governing equation (2) of this system:  Vertical

𝐼𝐼 + 𝑚𝑚𝑙𝑙2 �̈�𝜃 + 𝑚𝑚𝑚𝑚𝑙𝑙 sin𝜃𝜃 = −𝑚𝑚𝑙𝑙�̈�𝑥 cos 𝜃𝜃

𝑃𝑃 sin𝜃𝜃 + Ncos 𝜃𝜃 −𝑚𝑚𝑚𝑚 sin𝜃𝜃 = ml�̈�𝜃 + 𝑚𝑚�̈�𝑥 cos 𝜃𝜃

Forces in the vertical direction:

Inverted pendulum - – ODEs
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cos 𝜋𝜋 + ∅ ≈ −1

Assuming that the system remains within a small neighborhood of the 
equilibrium𝜃𝜃 = 𝜋𝜋
For small deviations ∅:

sin 𝜋𝜋 + ∅ ≈ −∅

�̇�𝜃2 = ∅2 ≈ 0

Inverted pendulum 
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Equations of motion are:

𝐼𝐼 + 𝑚𝑚𝑙𝑙2 ∅̈ + 𝑚𝑚𝑚𝑚𝑙𝑙∅ = 𝑚𝑚𝑙𝑙�̈�𝑥

(𝑀𝑀 + 𝑚𝑚)�̈�𝑥 + 𝑏𝑏�̇�𝑥 -𝑚𝑚𝑙𝑙∅̈ = F

Inverted pendulum - Dynamics
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Rearranging – State-Space representation
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From State-Space to Space..and back
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From state-space to Space
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Dynamical System

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= �̇�𝑥 = 𝑖𝑖(𝑥𝑥 𝑑𝑑 ,𝑢𝑢 𝑑𝑑 , 𝑑𝑑)

Rate of change

Possibly a non-linear function
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Time invariant system: Simplifying assumption #1

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= �̇�𝑥 = 𝑖𝑖(𝑥𝑥,𝑢𝑢)

Rate of change

f does not depend on time

• The underlying physical laws themselves do not typically depend on time.
• Inputs u(t) may be time dependent 
• The parameters/constants which describe the function f remain the same. 
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Linearity: Simplifying assumption #2

�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢

Over a sufficiently small operating range (think tangent line near a curve), 
the dynamics of most systems are approximately linear
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State-Space representation

A state-space model represents a system by a series of first-order differential state equations 
and algebraic output equations.

Differential equations have been rearranged as a series of first order differential equations.
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Example
Consider the following system where 𝑢𝑢 𝑑𝑑 is the input and �̇�𝑥(𝑑𝑑) is the output.

𝑥𝑥 + 5�̈�𝑥 + 3�̇�𝑥 + 𝑙𝑥𝑥 = 𝑢𝑢 , y = �̇�𝑥

Can create a state-space model by pure mathematical manipulation through changing 
variables

𝑥𝑥1 = 𝑥𝑥, 𝑥𝑥2= �̇�𝑥, 𝑥𝑥3 = �̈�𝑥
Resulting in the following three first order differential equations (ODEs)

̇𝑥𝑥1 = 𝑥𝑥2,

̇𝑥𝑥2 = 𝑥𝑥3,

̇𝑥𝑥3 = −5𝑥𝑥3 − 3𝑥𝑥2 − 2𝑥𝑥1 + 𝑢𝑢
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̇𝑥𝑥1 = 𝑥𝑥2
̇𝑥𝑥2 = 𝑥𝑥3

�̇�𝑥3 = −5𝑥𝑥3 − 3𝑥𝑥2 − 2𝑥𝑥1 + 𝑢𝑢
State Equations

𝑦𝑦 = 𝑥𝑥2Output Equation

System has 1 input (u), 1 output (y), and 3 state variables (x1, x2, x3)
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State-space representation 

̇⃑𝑥𝑥 = 𝐴𝐴�⃑�𝑥 + 𝐵𝐵𝑢𝑢

𝑦𝑦 = 𝛼𝛼�⃑�𝑥 + 𝐷𝐷𝑢𝑢

for linear systems
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From our prior example

̇𝑥𝑥1 = 𝑥𝑥2
̇𝑥𝑥2 = 𝑥𝑥3
̇𝑥𝑥3 = −5𝑥𝑥3 − 3𝑥𝑥2 − 2𝑥𝑥1 + 𝑢𝑢

𝑦𝑦 = 𝑥𝑥2 𝑦𝑦 = [ 0 1 0 ]
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

+ 0 𝑢𝑢

̇𝑥𝑥1
̇𝑥𝑥2
̇𝑥𝑥3

=
0 1 0
0 0 1
−2 −3 −5

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

+
0
0
1

𝑢𝑢
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The State-Space Modeling Process

1) Identify input variables (actuators and exogenous inputs).

2) Identify output variables (sensors and performance variables).

3) Identify state variables. (Hmmm…how ? – indep. energy storage)
4) Use first principles of physics to relate derivative of state variables 

to the input, state, and the output variables. 
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Why use state-space representations ?

State-space models:
• are numerically efficient to solve, 
• can handle complex systems, 
• allow for a more geometric understanding of dynamic systems, and 
• form the basis for much of modern control theory
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Linear dynamical system 
Continuous-time linear dynamical system (CT LDS) has the form 

�̇�𝑥 = 𝐴𝐴 𝑑𝑑 𝑥𝑥(𝑑𝑑) + 𝐵𝐵(𝑑𝑑)𝑢𝑢(𝑑𝑑) 𝑦𝑦(𝑑𝑑) = 𝛼𝛼 𝑑𝑑 𝑥𝑥(𝑑𝑑) + 𝐷𝐷(𝑑𝑑)𝑢𝑢(𝑑𝑑)
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Continuous-time linear dynamical system (CT LDS)

�̇�𝑥 = 𝐴𝐴 𝑑𝑑 𝑥𝑥(𝑑𝑑) + 𝐵𝐵(𝑑𝑑)𝑢𝑢(𝑑𝑑) 𝑦𝑦(𝑑𝑑) = 𝛼𝛼 𝑑𝑑 𝑥𝑥(𝑑𝑑) + 𝐷𝐷(𝑑𝑑)𝑢𝑢(𝑑𝑑)
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Linear dynamical system 
Some terminology
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Linear dynamical system 
Some terminology
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Linear dynamical system 
Some terminology

Principles of modeling for CPS – Fall 2020 Madhur Behl  - madhur.behl@virginia.edu 48



Linear dynamical system 
Some terminology
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Discrete-time linear dynamical system (DT LDS)

𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴 𝑘𝑘 𝑥𝑥(𝑘𝑘) + 𝐵𝐵(𝑘𝑘)𝑢𝑢(𝑘𝑘)

𝑦𝑦(𝑘𝑘) = 𝛼𝛼 𝑘𝑘 𝑥𝑥(𝑘𝑘) + 𝐷𝐷(𝑘𝑘)𝑢𝑢(𝑘𝑘)

𝑘𝑘
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Many dynamical systems are nonlinear (a fascinating 
topic) so why study linear systems? 

• Most techniques for nonlinear systems are based on linear systems.

• Methods for linear systems often work unreasonably well, in 
practice, for nonlinear systems.

• If you do not understand linear dynamical systems, you certainly 
cannot understand nonlinear dynamical systems.
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Many dynamical systems are nonlinear (a fascinating 
topic) so why study linear systems? 

“Finally, we make some remarks on why linear systems are so 
important.  The answer is simple: because we can solve them! ”

- Richard Feynman [Fey63, p. 25-4]
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Elements of..
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Modeling Mechanical Systems

Mechanical systems consist of three 
basic types of elements:

1. Inertia elements
2. Spring elements
3. Damper elements
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Vehicle suspension – Mass-spring-damper
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Inertia elements

• Example: any mass in the system, or moment of 
inertia.

• Each inertia element with motion needs its own 
differential equation (Newton’s 2nd Law, Euler’s 2nd 

law)

• Inertia elements store kinetic energy

𝐸𝐸 = �𝐹𝐹𝐹𝐹 𝑑𝑑𝑑𝑑 = �𝑚𝑚�̇�𝐹𝐹𝐹 𝑑𝑑𝑑𝑑 =
1
2
𝑚𝑚𝐹𝐹2

F ma=∑ M Jα=∑
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Spring elements

• Force is generated to resist deflection.

• Examples: translational and rotational springs

• Spring elements store potential energy

𝐸𝐸 = �𝐹𝐹𝐹𝐹 𝑑𝑑𝑑𝑑 = �𝑘𝑘𝑥𝑥�̇�𝑥 𝑑𝑑𝑑𝑑 =
1
2
𝑘𝑘𝑥𝑥2

1 2( )F k x x= −
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Damper elements

• Force is generated to resist motion.
• Examples: dashpots, friction, wind drag
• Damper elements dissipate energy

𝐹𝐹 = 𝑏𝑏( ̇𝑥𝑥1 − ̇𝑥𝑥2)

linear damping friction drag
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How many state variables are required ?

• There is an intuitive way to find state-space models

• What initial conditions do I need to capture the system’s state?

• Definition: the state of a dynamic system is the set of variables (called state variables) 
whose knowledge at t = t0 along with knowledge of the inputs for t ≥ t0 completely 
determines the behavior of the system for t ≥ t0

• # of state variables = # of independent energy storage elements
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Example

𝑚𝑚1�̈�𝑦 + b �̇�𝑦 − �̇�𝑧 + k y − z = 0

𝑚𝑚2�̈�𝑧 + b �̇�𝑧 − �̇�𝑦 + k z − y = u

Equations of motion

𝑥𝑥1 = 𝑦𝑦, 𝑥𝑥2 = �̇�𝑦

𝑥𝑥3 = 𝑧𝑧, 𝑥𝑥4 = �̇�𝑧

Choice of state variables
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Example

𝑚𝑚1 ̇𝑥𝑥2 + b 𝑥𝑥2 − 𝑥𝑥4 + k 𝑥𝑥1 − 𝑥𝑥3 = 0

𝑚𝑚2 ̇𝑥𝑥4 + b 𝑥𝑥4 − 𝑥𝑥2 + k 𝑥𝑥3 − 𝑥𝑥1 = u

Equations of motion

𝑥𝑥1 = 𝑦𝑦, 𝑥𝑥2 = �̇�𝑦

𝑥𝑥3 = 𝑧𝑧, 𝑥𝑥4 = �̇�𝑧

Choice of state variables
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Example

̇𝑥𝑥2 =
−b 𝑥𝑥2 − 𝑥𝑥4 − k 𝑥𝑥1 − 𝑥𝑥3

𝑚𝑚1

�̇�𝑥1 = 𝑥𝑥2
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�̇�𝑥3 = 𝑥𝑥4

̇𝑥𝑥4 =
𝑢𝑢 − b 𝑥𝑥4 − 𝑥𝑥2 − k 𝑥𝑥3 − 𝑥𝑥1

𝑚𝑚2

̇𝑥𝑥1
̇𝑥𝑥2
̇𝑥𝑥3
̇𝑥𝑥4

=

0 1 0 0
−𝑘𝑘
𝑚𝑚1

−𝑏𝑏
𝑚𝑚1

𝑘𝑘
𝑚𝑚1

𝑏𝑏
𝑚𝑚1

0
𝑘𝑘
𝑚𝑚2

0
𝑏𝑏
𝑚𝑚2

0 1
−𝑘𝑘
𝑚𝑚2

−𝑏𝑏
𝑚𝑚2

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

+

0
0
0
1
𝑚𝑚2

𝑢𝑢

Is this the minimum 
set of states ?



Example

Look at where energy is stored

Energy Storage Element State Variable
spring (stores elastic PE)

mass 1 (stores KE)

mass 2 (stores KE)

𝑥𝑥1 = (𝑦𝑦 − 𝑧𝑧)

𝑥𝑥2 = �̇�𝑦

𝑥𝑥3 = �̇�𝑧

damper does not store energy, it dissipates energy
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Example

𝑥𝑥1 = (𝑦𝑦 − 𝑧𝑧)

𝑥𝑥2 = �̇�𝑦

𝑥𝑥3 = �̇�𝑧

𝑚𝑚1�̈�𝑦 + b �̇�𝑦 − �̇�𝑧 + k y − z = 0

𝑚𝑚2�̈�𝑧 + b �̇�𝑧 − �̇�𝑦 + k z − y = u

̇𝑥𝑥1 = 𝑥𝑥2 − 𝑥𝑥3

̇𝑥𝑥2 = �̈�𝑦 =
1
𝑚𝑚1

−𝑏𝑏 𝑥𝑥2 − 𝑥𝑥3 − 𝑘𝑘𝑥𝑥1

̇𝑥𝑥3 = �̈�𝑧 =
1
𝑚𝑚2

−𝑏𝑏 𝑥𝑥3 − 𝑥𝑥2 + 𝑘𝑘𝑥𝑥1 + 𝑢𝑢Rewriting in state-space 
representation
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Example

̇𝑥𝑥1 = 𝑥𝑥2 − 𝑥𝑥3

̇𝑥𝑥2 = �̈�𝑦 =
1
𝑚𝑚1

−𝑏𝑏 𝑥𝑥2 − 𝑥𝑥3 − 𝑘𝑘𝑥𝑥1

̇𝑥𝑥3 = �̈�𝑧 =
1
𝑚𝑚2

−𝑏𝑏 𝑥𝑥3 − 𝑥𝑥2 + 𝑘𝑘𝑥𝑥1 + 𝑢𝑢

̇𝑥𝑥1
̇𝑥𝑥2
̇𝑥𝑥3

=

0 1 −1
−𝑘𝑘
𝑚𝑚1

−𝑏𝑏
𝑚𝑚1

𝑏𝑏
𝑚𝑚1

𝑘𝑘
𝑚𝑚2

𝑏𝑏
𝑚𝑚2

−𝑏𝑏
𝑚𝑚2

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

+
0
0
1
𝑚𝑚2

𝑢𝑢
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Modeling electrical systems

Capacitor
[storage]

Inductor
[storage]

Resistor
[dissipative]

Voltage source

Current source

Passive elements Active elements
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Mechanical – Electrical equivalency 

We recognize a common form to the ODE describing each system and create analogs in 
the various energy domains, for example:
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Capacitor - Mass

Electrical Capacitance

Translational Mass

i C
t
v21

d
d
⋅ E

1
2

M⋅ v21
2⋅

F M
t
v2

d
d
⋅ E

1
2

M⋅ v2
2⋅

Describing Equation Energy
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q = CV



Inductor - Spring

v21 L
t
id

d
⋅ E

1
2

L⋅ i2⋅

v21
1
k t

Fd
d
⋅ E

1
2

F2

k
⋅

Electrical Inductance

Translational Spring

Describing Equation Energy
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Resistor - Damper

Electrical Resistance

Translational Damper

F b v21⋅ P b v21
2⋅

i
1
R

v21⋅ P
1
R

v21
2⋅

Describing Equation Energy
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System

Flow

Effort

Generalized system representation. 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = 𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑢𝑢𝑚𝑚𝑇 𝐹𝐹𝑣𝑣𝑃𝑃𝑖𝑖𝑣𝑣𝑏𝑏𝑙𝑙𝑒𝑒 × 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 𝐹𝐹𝑣𝑣𝑃𝑃𝑖𝑖𝑣𝑣𝑏𝑏𝑙𝑙𝑒𝑒

System

Through variable

Across variable
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𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = 𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑢𝑢𝑚𝑚𝑇 𝐹𝐹𝑣𝑣𝑃𝑃𝑖𝑖𝑣𝑣𝑏𝑏𝑙𝑙𝑒𝑒 × 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 𝐹𝐹𝑣𝑣𝑃𝑃𝑖𝑖𝑣𝑣𝑏𝑏𝑙𝑙𝑒𝑒

𝑃𝑃 = 𝑖𝑖 × 𝑉𝑉Power is voltage times current

𝑃𝑃 = 𝐹𝐹 × 𝐹𝐹Power is velocity times force
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𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = 𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑢𝑢𝑚𝑚𝑇 𝐹𝐹𝑣𝑣𝑃𝑃𝑖𝑖𝑣𝑣𝑏𝑏𝑙𝑙𝑒𝑒 × 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 𝐹𝐹𝑣𝑣𝑃𝑃𝑖𝑖𝑣𝑣𝑏𝑏𝑙𝑙𝑒𝑒

Through variables: 
• Variables that are measured through an element.
• Variables sum to zero at the nodes on a graph/circuit/free body diagram.
• Variables that are measured with a gauge connected in series to an element.
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𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = 𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑢𝑢𝑚𝑚𝑇 𝐹𝐹𝑣𝑣𝑃𝑃𝑖𝑖𝑣𝑣𝑏𝑏𝑙𝑙𝑒𝑒 × 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 𝐹𝐹𝑣𝑣𝑃𝑃𝑖𝑖𝑣𝑣𝑏𝑏𝑙𝑙𝑒𝑒

Across variables: 
• Variables that are defined by measuring a difference, or drop, across an element, 

that is between nodes on a graph (across one or more branches).
• Variables sum to zero around any closed loop on the graph
• Variables that are measured with a gauge connected in parallel to an element.
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𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = 𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑢𝑢𝑚𝑚𝑇 𝐹𝐹𝑣𝑣𝑃𝑃𝑖𝑖𝑣𝑣𝑏𝑏𝑙𝑙𝑒𝑒 × 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 𝐹𝐹𝑣𝑣𝑃𝑃𝑖𝑖𝑣𝑣𝑏𝑏𝑙𝑙𝑒𝑒
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Energy storage : A-Type elements

Stored energy is a function of the Across-variable.
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Generalized, Capacitance
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Energy storage: T-Type elements

Stored energy is a function of the Through-variable.
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Generalized inductance, L 
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Dissipative elements : D-Type 

Dissipative elements (non-energy storage) 
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Generalized resistance, R
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Cyber-Physical Energy Systems Modeling

Thermal Capacitance

q Ct
t
T2

d
d
⋅ E Ct T2⋅

Thermal Resistance

q
1
Rt

T21⋅ P
1
Rt

T21⋅
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Next lecture..

Learn how to get paid for doing nothing 
while saving the environment !

….the answer might have to do with 
drinking tea.
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