
Lecture 7

Pr inc ip les  of  Model ing for  Cyber-Phys ica l  Systems

Instructor:  Madhur  Behl

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 1



Topics we will cover

•Model evaluation
•Model sensitivity and uncertainty
•Model order reduction
•Model predictive control
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But first..

• Assignment 4 is out:
• getlabel.m – generate predicted model outputs for a given set of parameters
• parameter_estimation.m – format i/o data and implement NLLS.
• Model evaluation
• Use the templates on Collab to save time.
• Due in ~ >1 week. Thursday, October 11, by 11:59pm
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Worksheet 4



How do I know my model is any good ?

• Purpose – predict the zone temperature based on the disturbances 
and control inputs.

• “Good” = How accurate is the predicted zone temperature 
(response) ?
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Predict response for optimal !*

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 6

"(0)
"(1)
⋮

"(( − 1)
= +!∗ - 0 + /!∗

0(0)
0(1)
⋮

0(( − 1)



How do I know my model is any good ?
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Quick review: Goodness of fit. 
• Root mean squared error: RMSE
• Coefficient of determination: R2

•Normalized root mean squared error: NRMSE
•Mean absolute error - MAE
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What is Root Mean Squared Error (RMSE)? 
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A simple example
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A simple example
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Sum of squared error (SSE):
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A simple example
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How much variation in y can the model explain ?
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y



Total variation in y
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How much variation in y is described by the model ?
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R2: Coefficient of determination
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Normalized Root Mean Squared Error (NRMSE) 
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MAE: Mean absolute error
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MAE measures the average magnitude of the errors in a set of predictions, 
without considering their direction



MAE v RMSE: Similarities
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• Both MAE and RMSE express average model prediction error in units of the 
variable of interest.

• Both metrics can range from 0 to ∞ and are indifferent to the direction of 
errors.

• They are negatively-oriented scores, which means lower values are better.



MAE v RMSE:
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RMSE is more useful when large errors are parDcularly undesirable.

RMSE does not necessarily increase with the variance of the errors. 



MAE v RMSE: Example 1
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MAE v RMSE: Example 1
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MAE v RMSE: Example 1
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MAE v RMSE: Example 2
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[MAE] ≤ [RMSE] ≤ [MAE * sqrt(n)]

MAE v RMSE



MATLAB implementation
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Regress to impress !
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Regress to impress !
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Test/train split
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Cross validation
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Cross valida+on
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Cross validation
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Worksheet 4 discussion 
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