Model Sensitivity Analysis

Lecture 8

Principles of Modeling for Cyber-Physical Systems

Instructor: Madhur Behl

Principles of Modeling for CPS – Fall 2018

How do I know my model is any good ?

In general $y = f(\theta, x(t), u(t))$

We want to attribute, the uncertainty in **y** to the uncertainty and errors in parameters θ , and inputs **u**

Sensitivity = $\frac{How much does the output y change}{for a change in a single parameter or input}$ subject to, all other things being the same.

Abbreviation	Input parameter	Influence coefficient(2-3) (% OP per % IP)
Uwall	wall heat transfer	0.206
U_{glass}	glass heat transfer	0.098
g _{glass}	solar gain glass	-0.211
Heat gains	Amount of heat gain	-0.198
Awindow	window frame-to-glass ratio	0.123
VentR	Ventilation rate	0.485

Better models for better control..

Small and medium sized commercial buildings (90% of the commercial building stock) do

not want to spend thousands of dollars on retrofitting.

"Accuracy costs money, how accurate do you want it ?"

Sensor Data Quality vs Building Model Accuracy?

Two thermostats/actuators, same objective

Sensor Data Quality and Uncertainty

1) Due to Sensor Placement and Density

2) Due to Sensor Precision

Image courtesy Bryan Eisenhower (IMA talk)

3) Due to Inference: E.g. Heat gains from Occupancy measured with people counters

4) Measurement Noise

Building Modeling: "RC-Networks"

Building Modeling: "RC-Networks"

Discrete-Time State Space Model:

(parameterized by θ)

States (All node temperatures):

 $\mathbf{x} = [\mathsf{T}_{\text{eo}}, \mathsf{T}_{\text{ei}}, \mathsf{T}_{\text{co}}, \mathsf{T}_{\text{ci}}, \mathsf{T}_{\text{go}}, \mathsf{T}_{\text{gi}}, \mathsf{T}_{\text{io}}, \mathsf{T}_{\text{ii}}, \mathsf{T}_{z}]^{\mathsf{T}}$

Inputs (Disturbances and Control):

 $\mathbf{u} = [\mathsf{T}_{\mathsf{a}}, \mathsf{T}_{\mathsf{g}}, \mathsf{T}_{\mathsf{i}}, \mathsf{Q}_{\mathsf{sole}}, \mathsf{Q}_{\mathsf{sole}}, \mathsf{Q}_{\mathsf{rade}}, \mathsf{Q}_{\mathsf{rade}}, \mathsf{Q}_{\mathsf{radg}}, \mathsf{Q}_{\mathsf{solt}}, \mathsf{Q}_{\mathsf{conv}}, \mathsf{Q}_{\mathsf{sens}}]^{\mathsf{T}}$

Parameter Estimation:

Least Squares Error

$$\theta^* = \underset{\theta_l \le \theta \le \theta_u}{\operatorname{arg\,min}} \sum_{k=1}^{N} (T_{z_m}(k) - T_{z_\theta}(k))^2$$

subject to $\theta_l \leq \theta \leq \theta_u$

$x(k+1) = \hat{A}_{\theta}x(k) + \hat{B}_{\theta}u(k)$ $y(k) = \hat{C}_{\theta}x(k) + \hat{D}_{\theta}u(k)$

LIST OF PARAMETERS

$U_{\star o}$ convection coefficient between the wall and outside	air
$U_{\star w}$ conduction coefficient of the wall	
$U_{\star i}$ convection coefficient between the wall and zone air	r .
U_{win} conduction coefficient of the window	
$C_{\star\star}$ thermal capacitance of the wall	
C_z thermal capacity of zone z_i	
g: floor; e: external wall; c: ceiling; i: internal wall	

Accuracy of an Inverse Model

1)Model Structure x(t) = Ax(t) + Bu(t) y(t) = Cx(t) + Du(t)

2) Parameter estimation algorithm

3)Uncertainty in the input-output data

Measurement Data

Cooling Rate Convective Heat Gain Solar Irradiance Radiative Heat Gain Transmitted Solar Ambient Temperature Surface Temperatures

> Parameter Estimation (Inverse Model Training)

- North Facing
- 4 external brick walls
- 4 large windows
- Concrete floor and ceiling
- Philadelphia-TMY2 weather
- 3.5kW HVAC system

- 12 RC parameters
- 7 inputs, 1 output
- Baseline Model: RMSE 0.187
 - °C, R² 0.971
- Introduce fixed

perturbations/bias in each

input: $z'_i = z_i \pm (\delta * z_i)$

Ambient temperature, convective heat gain, radiative heat gain, external solar gain, ground temperature, sensible cooling load

Case study: Building 101

Building 101 is located in Philadelphia and it's the US DoE's Energy Efficient Buildings Hub Headquarter

Case study: Building 101

Input Uncertainty Analysis: Building 101

Normalized % RMSE change in model <u>accuracy</u>

Model Accuracy Sensitivity Coefficient: Building 101

Sensor Placement and Quality of Data: Suite 210

Is there a bias in the Thermostat data due to its location ?

Compare the "true" (mean) temperature with thermostat measurement

Sensor Placement and Quality of Data: Suite 210

Sensor Placement and Quality of Data: Suite 210

Sensor Placement and Bias

Maybe not.. Multiple subsets could be compared

A closer look at temperature data

Temperature sensor data is not normal (Gaussian)

Principles of Modeling for CPS – Fall 2018

Non-parametric statistical methods

Use **Wilcoxon's rank sum test** and **Bland-Altman** plots to quantify bias and identify best sensor placements.

Non-parametric statistical methods

TABLE II: Wilcoxon's test results for all values of k

k	Min. bias subset T_k	Bias Estimate μ_k
1	S_4	0.0275
2	S_{3}, S_{4}	-0.0106
3	$S_1, S_2, Tstat$	0.00708
4	$S_1, S_3, S_4, Tstat$	0.22
5	$S_1, S_3, S_4, S_2, Tstat$	24) (14)

Zone Temperature – Business as usual

Zone Temperature – Business as usual

Zone Temperature – Business as usual

Case study: Building 101

Case study: Building 101

AHU Functional Tests: Suite 210

Functional tests were carried out in Suite 210 in June 2013.

AHU Functional Tests: Suite 210

Functional tests were carried out in Suite 210 in June 2013.

What is Experiment Design ?

Optimal Experiment Design

Find the optimal input signal trajectory which maximizes the

information about the model parameters subject to

operational constraints.

Optimal Experiment Design

Likelihood functions play a key role in statistical inference and parameter estimation.

$$L = \mathbf{P}[\texttt{data}|\texttt{model}]$$

The probability that we see the given data due to the model we have assumed for the building/equipment.

Maximum Likelihood Estimate

Maximum Likelihood & Fisher Information

(2) Some way to quantify the difference between likelihood functions i.e. how quickly does it fall of around the maximum

$$L(\alpha) \equiv L(\alpha) + \frac{\partial L(\alpha)}{\partial \alpha} |_{\alpha^*} (\alpha - \alpha^*) + \frac{\partial^2 L(\alpha)}{\partial \alpha^2} |_{\alpha^*} (\alpha - \alpha^*)^2$$

= 0 at maxima α^* Fisher information

Cramer-Rao bound

Let y^t denote the set of t measurements y(0), y(1),, y(t-1).

The likelihood function $L(\alpha) = \mathbf{P}[y^t; \alpha]$ model data

For any <u>unbiased</u> estimator we have the following Cramer-Rao lower bound: $\mu(\alpha) = \alpha^* - \mathbf{E}[\hat{\alpha} | \alpha^*]$

For the RC 'grey box' building model

$$\begin{aligned} x(t+1) &= A_{\alpha}x(t) + B_{\alpha}u(t) + W\omega(t) & \text{State space} \\ y(t+1) &= C_{\alpha}x(t+1) + D_{\alpha}u(t+1) + \nu(t+1) & \text{model} \end{aligned}$$

$$\begin{split} \mathbf{P}[y(\tau)|y(\tau-1);\alpha] &= \frac{1}{\sqrt{2\pi \det[F(t)]}} e^{\frac{-1}{2}[r^T(t)F^{-1}(t)r(t)]} \\ & \text{Likelihood function} \end{split}$$

 $\begin{array}{ll} \text{Need Kalman filter} & F(t) = \mathbf{E}[y(t) - \hat{y}(t|t-1)][y(t) - \hat{y}(t|t-1)]^T \\ \text{equations to compute} & = C\Sigma(t|t-1)C^T + R \\ \text{the likelihood} \\ \text{function.} & \Sigma = A\Sigma A^T + WQW^T - A\Sigma C^T (C\Sigma C^T + R)^{-1} C\Sigma A^T \\ \end{array}$

But where is the experiment design ?

First we compute the Fisher Information Matrix

$$\begin{split} \underline{I}_{\underline{z}^{t}}(\underline{\alpha}) &= \sum_{\tau=0}^{t} tr \left[\frac{\overline{\partial \underline{r}(\tau;\underline{\alpha})}}{\partial \alpha_{\underline{i}}} \frac{\overline{\partial \underline{r}'(\tau;\underline{\alpha})}}{\partial \alpha_{\underline{j}}} \underline{\underline{s}^{-1}(\underline{\alpha})} \right] \\ &+ (t+1) tr \left[\underline{\underline{s}}_{\underline{i} \underline{j}}(\underline{\alpha}) \underline{\underline{s}^{-1}(\underline{\alpha})} + \frac{1}{2} \frac{\partial \underline{\underline{s}}(\underline{\alpha})}{\partial \alpha_{\underline{i}}} \underline{\underline{s}^{-1}(\underline{\alpha})} \frac{\partial \underline{\underline{s}}(\underline{\alpha})}{\partial \alpha_{\underline{j}}} \underline{\underline{s}^{-1}(\underline{\alpha})} \right] \end{split}$$

Depends only on the inputs and disturbances into the system

Optimality criteria

Optimality criteria of the information matrix

A-optimal design ⇔ average variance

$$\min_{y} trace(I(y)^{-1})$$

D-optimality ⇔ uncertainty ellipsoid

$$\min_{y} det(I(y)^{-1})$$

• E-optimality \Leftrightarrow minimax

 $\min_{y} \max(eig(I(y)^{-1}))$

• Almost a complete alphabet...

Example

Cai, Jie, et al. "Optimizing zone temperature set-point excitation to minimize training data for data-driven dynamic building models." *American Control Conference (ACC), 2016*. IEEE, 2016.

Optimal and conventional temperature set-point profiles

Performance comparison of models trained with conventional and optimal training data sets

