
Uppaal 4.0 : Small Tutorial∗

16 November 2009

1 Introduction

This document is intended to be used by newcomers to Uppaal and verification. Students or
engineers with little background in formal methods should be able to use Uppaal for practical
purposes after this tutorial.

Section 2 describes Uppaal and Section 3 is the tutorial itself.

2 Uppaal

Uppaal is a tool box for validation (via graphical simulation) and verification (via automatic
model-checking) of real-time systems. It consists of two main parts: a graphical user interface and
a model-checker engine. The user interface is implemented in Java and is executed on the users
work station. Version 4.0 of Uppaal requires that the Java Runtime Environment 5 or higher is
installed on the computer. The engine part is by default executed on the same computer as the
user interface, but can also run on a more powerful server.

The idea is to model a system using timed automata, simulate it and then verify properties on
it. Timed automata are finite state machines with time (clocks). A system consists of a network
of processes that are composed of locations. Transitions between these locations define how the
system behaves. The simulation step consists of running the system interactively to check that it
works as intended. Then we can ask the verifier to check reachability properties, i.e., if a certain
state is reachable or not. This is called model-checking and it is basically an exhaustive search
that covers all possible dynamic behaviours of the system.

More precisely, the engine uses on-the-fly verification combined with a symbolic technique re-
ducing the verification problem to that of solving simple constraint systems [YPD94, LPY95]. The
verifier checks for simple invariants and reachability properties for efficiency reasons. Other prop-
erties may be checked by using testing automata [JLS96] or the decorated system with debugging
information [LPY97].

3 Learning Uppaal

Uppaal is based on timed automata, that is finite state machine with clocks. The clocks are the
way to handle time in Uppaal. Time is continuous and the clocks measure time progress. It is
allowed to test the value of a clock or to reset it. Time will progress globally at the same pace for
the whole system.

A system in Uppaal is composed of concurrent processes, each of them modeled as an automa-
ton. The automaton has a set of locations. Transitions are used to change location. To control
when to take a transition (to “fire” it), it is possible to have a guard and a synchronization. A
guard is a condition on the variables and the clocks saying when the transition is enabled. The
synchronization mechanism in Uppaal is a hand-shaking synchronization: two processes take a

∗This description covers version 4.0.7

1









transition at the same time, one will have an a! and the other an a?, with a being the synchro-
nization channel. When taking a transition, two actions are possible: assignment of variables or
reset of clocks.

The following examples will make you familiar with this short description.

3.1 Overview

The Uppaal main window (Figure 1) has two main parts: the menu and the tabs.

Figure 1: Overview of Uppaal.

The menu is described in the integrated help, accessible through the help menu. The help
further describes the used syntax and the GUI in detail, so this tutorial will focus on how to use
the tool. The three tabs give access to the three components of Uppaal that are the editor, the
simulator and the verifier.

Figure 1 shows the editor view. The idea is to define templates (like in C++) for processes that
are instantiated to have a complete system. The motivation for the templates is that system often
have several processes that are very alike. The control structure (i.e., the locations and edges)
is the same, only some constant or variable is different. Therefore templates can have symbolic
variables and constants as parameters. A template may also have have local variables and clocks.

When you start Uppaal, there is one location pre-created in the drawing area. It is the initial
location of the automaton, so it has an additional circle inside. To add a second location, click on
the “Add Location” button in the tool bar (tool tips will help you) and then click in the drawing
area, a bit next to the initial location. Use the “Selection Tool” to give them the names start
and end. Then choose the Add Edge button, click on the start location and on the end location.
You have your first automaton ready, as depicted in Figure 2.

There is another important detail in the editor which you should know about. On the bottom
of the screen, there is a bar which you can “drag up”. This will open a table with rows Position
and Description which is most likely empty at that moment. Later, it will contain very useful
information about syntactical compile errors that your model contains. Using this will make it
much easier to find and fix them.

2







start end

Figure 2: Your first automaton.

Now, click on the Simulator tab to start the simulator, click on the yes button that will pop
up and you are ready to run your first system.

Figure 3: A snapshot of the graphical simulator.

Figure 3 shows the simulator view. On the left you will find the control part where you can
choose the transitions (upper part) and work on an existing trace (lower part). In the middle
are the variables and on the right you see the system itself. Below the system, you will see what
happens in which process.

To simulate our trivial system pick one of the enabled transitions in the list in the upper
left part of the screen. Of course there is only one transition in our example. Click Next. The
process view to the right will change (the red dot indicating the current location will move) and
the simulation trace will grow. You will note that more transitions are actually not possible, so
the system is deadlocked.

We have now simulated our system and will proceed with verification. Click on the Verifier
tab. The verifier view as in Figure 4 is displayed. The upper section allows you to specify queries
to the system. The lower part logs the communication with the model-checking engine.

Enter the text E<>Process.end in the Query field below the Overview. This is the Uppaal

3



Figure 4: A snapshot of the verifier view.

notation for the temporal logic formula ∃⋄Process.end and should be understood as “it is possible
to reach the location end in automaton Process”. Click Check to let the engine verify this. The
bullet in the overview will turn green indicating that he property indeed is satisfied.

The goal of the rest of this document is to explore some key points of Uppaal through examples.

3.2 Mutual Exclusion Algorithm

We will study now the known Petterson’s mutual exclusion algorithm to see how we can derive a
model as an automaton from a program/algorithm and check properties related to it.

The algorithm for two processes is as follows in C:

Process 1 Process 2
req1=1; req2=1;
turn=2; turn=1;
while(turn!=1 && req2!=0); while(turn!=2 && req1!=0);
// critical section: // critical section:
job1(); job2();
req1=0; req2=0;

You will construct the corresponding automata. Notice that the protocol is symmetric, so we
may use a template of Uppaal to simplify the model. First reset the system (New system) to
clear the “Hello World” example. Rename the default template P to mutex.

We will abstract the actual work in the critical section since it has no interest here. The
protocol has four states that come directly from the described algorithm, similar to goto labels.
Using these, both processes can be written as follows:

4



Process 1
idle:
req1=1;

want:
turn=2;

wait:
while(turn!=1 && req2!=0);

CS:
//critical section
job1();
req1=0;

//and return to idle

Process 2
idle:
req2=1;

want:
turn=1;

wait:
while(turn!=2 && req1!=0);

CS:
//critical section
job2();
req2=0;

//and return to idle

As automata, the processes will look as depicted in Figure 5.

CS wait

wantidle

req1 := 0

req2 == 0

turn == 1

turn := 2

req1 := 1

CS wait

wantidle

req2 := 0

req1 == 0

turn == 2

turn := 1

req2 := 1

Figure 5: Mutex automata

The blue expressions are assignments to variables, that are executed when the correspond-
ing transition is taken. The green expressions are guards that have to be true in order for the
corresponding transition to be enabled.

You may notice that the two automata look very alike. The only difference are certain values
and variable names. In order to save work, we will define just one template automaton, and then
instantiate this template twice. The template may look as in Figure 6. Note that we replace
the variables req1 and req2 with placeholders req self and req other which we will instantiate
later. The new variable me will indicate to the instance, which process it represents.

CS wait

wantidle

req_self := 0

req_other == 0

turn == me

turn := (me == 1 ? 2 : 1)

req_self := 1

Figure 6: Mutex template

In order to create a template, you first draw the automaton from Figure 5 as before. Let’s

5



call this template “mutex”, which you specify in the Name: field right above the drawing area. In
addition, you must specify the template parameters me, req self and req other. You do this by
writing them in the Parameters: field right next to the Name: field. Write the following:

const int[1,2] me, int[0,1] &req_self, int[0,1] &req_other

This means that you define three variables for instantiation of type integer, bounded to two
values each. The first one, me, is a constant, and the other two have to be variables with boolean
values (0 or 1).

As you can guess now from your drawing, two instances of the type P1 = mutex(1, req1,
req2); and P2 = mutex(2, req2, req1); will do the job. Examine how the expression (like C
syntax) turn := (me == 1 ? 2 : 1) will evaluate. To create the instances open the System
declarations label in the Project tree and type the declarations above (replacing the default line
that instantiates the default template). In addition, specify that the system now consists of P1 and
P2 by writing them behind the keyword system, comma-separated. The System declarations
contain now:

// Place template instantiations here.
P1 = mutex(1, req1, req2);
P2 = mutex(2, req2, req1);

// List one or more processes to be composed into a system.
system P1, P2;

Something is still missing: the variables also have to be declared. Click on the Declarations
label and declare: int[0,1] req1,req2; and int[1,2] turn;

Now you have defined your template, instantiated it twice, used the instantiations in the system
and declared proper variables. As you may notice, the variables declared are global. This is used
for turn that is shared. The scope of the name declaration are local first and then global. Before
we go on, do a syntax check (Tools menu or press F7) and have a look in the list that you can
drag up below the drawing area. It should be empty, otherwise fix the reported issues.

Now, click on the Simulator tab and examine how the two automata were instantiated. Look
particularly at the names of the two automata that are symmetric. You can simulate your system
by choosing interactively the transitions. Try to reach the critical section in both processes at the
same time . . . well you cannot, that’s the point of the protocol. But using simulation, we can’t
be sure about this. A better idea is to use the verifier.

Click on the Verifier tab, click on the Insert button, click in the Query text area and write
the mutual exclusion property: A[] not (P1.CS and P2.CS). Press the Check button and you
are done. There should be a green button lighted on, which means that the property was verified.
If the button were red it would mean that the property was not verified. The property A[] is a
safety property: you check that not (P1.CS and P2.CS) is always true. Another type of property,
the E<> may be used for reachability properties. For example insert a new property E<> P1.CS,
that checks if process P1 may reach the critical section.

If the system was not correct Uppaal can return an diagnostic trace. First change the model so
it is faulty. E.g. change the guard req other == 0 to req other == 1. Then go to the Options
menu and activate one of the Diagnostic Trace options; select the mutual exclusion property,
then press the Check button. Now this property should not be satisfied. You can now return to
the simulator and go through the found trace. Choose the first entry in the trace and then press
Replay for this.

You have now modeled, simulated and verified a simple mutual exclusion protocol. In the
demo folder in the distribution directory there are a few other simple examples. For example the
file fischer.xml contains another mutual exclusion protocol, together with some example queries
in fischer.q.

6



3.3 Time in Uppaal

This sub-section intends to explain intuitively the concept of time in Uppaal.
The time model in Uppaal is continuous time. Technically, it is implemented as regions and

the states are thus symbolic, which means that at a state we do not have any concrete value for
the time, but rather differences [AD94]. To grasp how the time is handled in Uppaal we will
study a simple example. We will use an observer to show the differences. Normally, an observer
is an add-on automaton in charge of detecting events without perturbing the observed system. In
our case the reset of the clock (x := 0) is delegated to the observer to make it work. Note that
by doing this, the original behaviour of the system – with the clock reset directly on the transition
loop to itself – is not changed.

Figure 7 shows the first model with its observer. Time is used through clocks. In the example, x
is a clock declared as clock x; in the global Declarations section. A channel reset is used for
synchronization with the observer, which is also declared (as chan reset) in the Declarations
section. The channel synchronization is a hand-shaking between reset! and reset? in our
example. So in this example the clock may be reset after 2 time units. The observer detects this
and actually performs the reset.

loop
x >= 2
reset!

takenidle

x := 0

reset?

Figure 7: First example with the automata P1 and Obs observer.

Draw the model, name the automata P1 and Obs, define them in the system. A new template
is created with Insert Template in the Edit menu. (You can just write the template names directly
in the system statement, Uppaal will automatically instantiate them for you.) Notice that the
state taken of the observer is of type committed. If you simulate the system you will not see
much. To train to interpret what you see we will use queries and modify the system progressively.
The expected behaviour of our system is depicted in Figure 8.

2 4 6 8

2

4

"time"

c
lo

c
k

 x

Figure 8: Time behaviour of the first example: this is one possible run.

Try these properties to exhibit this behaviour:

• A[] Obs.taken imply x>=2 : all fall-down of the clock value (see curve) are above 2. This
query means: for all states, being in the location Obs.taken implies that x>=2.

7



• E<> Obs.idle and x>3 : this is for the waiting period, you can try values like 30000 and
you will get the same result. This question means: is it possible to reach a state where Obs
is in the location idle and x>3.

Add now an invariant to the loop location as shown in Figure 9.

loop

x <= 3

x >= 2
reset!

2 4 6 8

2

4

"time"

c
lo

c
k

 x

Figure 9: Adding an invariant: the new behaviour.

The invariant is a progress condition: the system is not allowed to stay in the state more than
3 time units (more precisely: only as long as the clock x is no larger than 3), so the transition has
to be taken and the clock reset in our example.

To see the difference, try the properties:

• A[] Obs.taken imply (x>=2 and x<=3) to show that the transition is taken when x is in
the interval [2, 3].

• E<> Obs.idle and x>2 : it is possible to take the transition with x in the interval (2, 3].

• A[] Obs.idle imply x<=3 : to show that the upper bound is respected.

The former property E<> Obs.idle and x>3 no longer holds.

Now, remove the invariant and change the guard to x >= 2 and x <= 3. You may think that
it is the same as before – but it is not! The system has no progress condition anymore, just a new
condition on the guard now. Figure 10 shows the new system.

loop
x >=2 and x <= 3
reset!

2 4 6 8

2

4

"time"

c
lo

c
k

 x

Figure 10: No invariant and a new guard: the new behaviour.

As you can see the system may take the same transitions as before, but there is now a deadlock:
the system may be stuck if it does not take the transition after 3 time units. Retry the same
properties, the last one does not hold now. Actually you can see the deadlock with the following
property: A[] x>3 imply not Obs.taken, that is after 3 time units the transition can not be
taken any more.

8



3.4 Urgent/Committed Locations

We will now look at the different kinds of locations of Uppaal. You already saw the type
committed in the previous example. There are three different types of locations in Uppaal:

Normal locations with or without invariants (like x <= 3 above),

Urgent locations and

Committed locations as used in the Obs automaton.

Draw the automata depicted in Figure 11 and name them P0, P1 and P2. Define the clocks x
locally for each automaton, in order to try this feature: open the sub-tree of their templates in
the Project tree. There you will see a Declarations label under the template in question. Click
on it and define clock x;. Repeat for the other two automata.

S2S1S0 x := 0

S2S1S0 x := 0

S2S1S0 x := 0

Figure 11: Automata with normal, urgent and committed states.

The location marked “U” is urgent and the one marked “C” is committed. Try them in the
simulator and notice that when in the committed state, the only possible transition is always the
one going out of the committed state. The committed state has to be left immediately. To see the
difference between normal and urgent state, go to the verifier and try the properties:

• E<> P0.S1 and P0.x>0 : it is possible to wait in S1 of P0.

• A[] P1.S1 imply P1.x==0 : it is not possible to wait in S1 of P1.

Time may not pass in an urgent state, but interleavings with normal states are allowed as you
can see in the simulator. Thus, urgent locations are “less strict” variants than committed ones.

3.5 Verifying properties

In the examples above we have used the verifier several times. We will now give a more complete
treatment of the language that the verifier understands. In summary, the queries available in the
verifier are:

• E<> p: there exists a path where p eventually holds.

• A[] p: for all paths p always holds.

• E[] p: there exists a path where p always holds.

• A<> p: for all paths p will eventually hold.

• p --> q: whenever p holds q will eventually hold.

where p and q are state formulas like for example (P1.cs and x<3). The full grammar of the
query language is available in the on-line help. Note the useful special form A[] not deadlock
that checks for deadlocks.

9



3.6 Some Modeling Tricks

Uppaal offers urgent channels (defined using urgent chan) that are synchronization that must
be taken when the transition is enabled, without delay. Clock conditions on these transitions are
not allowed. It is possible to encode “urgent transitions” with a guard on a variable, i.e. busy wait
on a variable, by using urgent channels. Use a dummy process with one state looping with one
transition read!. The urgent transition will be x>0 read? for example.

There is no value passing through the channels but this is easily encoded by shared variable:
define globally a variable x, and use it for reading and writing. Notice that it is not clean to do
read! x:=3; and read? y:=x; but it is better to use a committed location in between: First
the read? transition into the committed location, then the transition setting y:=x;.

Since Uppaal 4, broadcast communication is also possible: The intuition is that an edge with
synchronisation label e! emits a broadcast on the channel e and that any enabled edge with
synchronisation label e? will synchronise with the emitting process. More details are given in the
online help.

Arrays of integers may be useful, declare them as int a[3]; to have an array indexable from
0 to 2. The index can be another variable i typically int[0,2] i; to be clean.

To keep a model manageable, one has to pay attention to some points:

• The number of clocks has an important impact on the complexity, i.e., on the verification
time, since it highly influences the state space.

• The use of committed locations can reduce significantly the state space, but one has to be
careful with this feature because it can possibly take away relevant states.

• The number of variables plays an important role as well and more importantly their range.
One should be careful that the integer will not use all the values from -32000 to 32000 for
example. In particular avoid unbounded loops on integers since the values will then span
over the full range.

References

[YPD94] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verification of Real-Time Com-
municating Systems By Constraint-Solving. In Proc. of the 7th International Conference
on Formal Description Techniques, 1994.

[LPY95] Kim G. Larsen, Paul Pettersson, and Wang Yi. Model-Checking for Real-Time Sys-
tems. In Proc. of Fundamentals of Computation Theory, volume 965 of Lecture Notes in
Computer Science, pages 62–88, August 1995.

[JLS96] H.E. Jensen, K.G. Larsen, and A. Skou. Modelling and Analysis of a Collision Avoidance
Protocol Using SPIN and Uppaal. In Proc. of 2nd International Workshop on the SPIN
Verification System, pages 1–20, August 1996.

[LPY97] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Analysis of a Gear-
Box Controller: an Industrial Case Study using Uppaal. In preparation, 1997.

[AD94] R. Alur and D. Dill. A Theory for Timed Automata In Theoretical Computer Science,
volume 125, pages 183–235, 1994.

10



Version history

March 2001 First version by Alexandre David.

28 Apr 2001 Corrections by Alexandre David. Bug in a requirement, added: chan declaration,
bug in declarations: int[0,1] req1,req2, turn; turn is int, not int[0,1]!

17 Dec 2001 Updates by Alexandre David. Added how to mark initial states (because the new
UPPAAL does not make the first state initial by default anymore).

16 0ct 2002 Updates by Tobias Amnell. Changed screen-shoots to recent version (3.2.11), added
verification walk-through in start-end example, added section on query language plus text
updates on several places.

16 Nov 2009 Updates by Martin Stigge. Adapted document to version 4.0.7 of Uppaal (syntax
and screenshots). More detailed version of the mutex example to decrease confusion. A
bunch of minor fixes and clarifications, thanks to Pontus Ekberg.

11


